Year 10 Mathematics Probability Practice Test 1

1 A letter is chosen randomly from the word TELEVISION.
a How many letters are there in the word TELEVISION?
b Find the probability that the letter is:
i a V
ii an E
iii not an E
iv an E or a V

2 An experiment involves tossing three coins and counting the number of heads. Here are the results after running the experiment 100 times.

Number of heads	0	1	2	3
Frequency	11	40	36	13

a How many times did 2 heads occur?
b How many times did fewer than 2 heads occur?
c Find the experimental probability of obtaining:
i 0 heads ii 2 heads iii fewer than 2 heads iv at least one head
3 Consider the given events A and B that involve numbers taken from the first 10 positive integers.

$$
A=\{1,2,3,4,5,6\} \quad B=\{1,3,7,8\}
$$

a Represent the two events A and B in a Venn diagram.
b List the sets: i A and B
ii A or B
c If a number from the first 10 positive integers is randomly selected, find the probability that the following events occur.
i A
ii A and B
iii A or B
d Are the events A and B mutually excusive? Why or why not?
4 From a class of 30 students, 12 enjoy cricket (C), 14 enjoy netball (N) and 6 enjoy both cricket and netball.
a Illustrate this information in a Venn diagram.
b State the number of students who enjoy:
i netball only
ii neither cricket nor netball
c Find the probability that a person chosen at random will enjoy:
i netball
ii netball only
iii both cricket and netball

5 The Venn diagram shows the distribution of elements in two sets, A and B.

a Transfer the information in the Venn diagram to a two-way table.
b Find the number of elements for these regions.
i) A and B ii B only iii A only iv neither A nor $B v a v i n o t B$ vii A or B
c Find: i $\mathrm{P}(\mathrm{A}$ and B) ii P ($\operatorname{not} \mathrm{A}$) iii P (A only)
6 Consider this Venn diagram, displaying the number of elements belonging to the events A and B .

Find the following probabilities.
a $\mathrm{P}(\mathrm{A})$
b $\mathrm{P}(\mathrm{A}$ and B)
c $P(A \mid B)$
d $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$

7 From a group of 15 hockey players at a game of hockey, 13 played on the field, 7 sat on the bench and 5 both played and sat on the bench. A hockey player is chosen at random from the team.
Let A be the event 'the person played on the field' and B be the event 'the person sat on the bench'.
a Represent the information in a two-way table.
b Find the probability that the person only sat on the bench.
c Find the probability that the person sat on the bench, given that they played on the field.
d Find the probability that the person played on the field, given that they sat on the bench.

8 A six-sided die is rolled twice.
a List all the outcomes, using a table.
b State the total number of outcomes.
c Find the probability of obtaining the outcome $(1,5)$.
d Find:
i P (double) ii P (sum of at least 10) iii P (sum not equal to 7)

9 Two letters are chosen from the word KICK, without replacement.
a Construct a table to list the sample space.
b Find the probability of:
i obtaining the outcome (K, C)
ii selecting two Ks
iii selecting a K and a C
10 Boxes A and B contain 4 counters each. Box A contains 2 red and 2 green counters and box B contains 1 red and 3 green counters. A box is chosen at random and then a single counter is selected.

Box A Box B

a What is the probability of selecting a red counter from box A ?
b What is the probability of selecting a red counter from box B ?
c Represent the options available as a tree diagram that shows all possible outcomes and related probabilities.
d What is the probability of selecting box B and a red counter?
e What is the probability of selecting a red counter?
11 A bag contains 5 blue (B) and 3 white (W) marbles and two marbles are selected without replacement.
a Draw a tree diagram showing all outcomes and probabilities.
b Find the probability of selecting:
i a blue marble followed by a white marble (B, W)
ii 2 blue marbles iii exactly one blue marble
c If the experiment was repeated with replacement, fi nd the answers to each question in part b .
12 Decide whether the following events A and B are independent.
a A die is rolled twice. Let A be the event 'rolling a 6 on the first roll' and let B be the event 'rolling a 3 on the second roll'.
b Two playing cards are randomly selected from a standard deck, without replacement. Let A be the event 'the first card is a heart' and let B be the event 'the second card is a heart'.

ANSWERS

1 a) 10
b) $P(E)=1 / 5$
c) $\mathrm{P}($ Not an E$)=4 / 5$
d) $\quad \mathrm{P}(\mathrm{E}$ or a V$)=3 / 10$

2
a) 36
b) 51
c) i) $\mathrm{P}($ No heads $)=11 / 100$
ii) $\mathrm{P}(2$ heads $)=36 / 100$
iii) $\mathrm{P}($ fewer than 2 heads $)=51 / 100$
iv) $\mathrm{P}($ at least one head $)=89 / 100$

3 a)

b) i A and $\mathrm{B}=\{1,3\}$
ii A or $B=\{1,2,3,4,5,6,7,8\}$
c) i $\mathrm{P}(\mathrm{A})=3 / 5$
ii $\mathrm{P}(\mathrm{A}$ and B$)=1 / 5$
iii $\mathrm{P}(\mathrm{A}$ or B$)=4 / 5$
d) The sets A and B are not mutually exclusive since there are numbers inside A and B
$4 \quad$ a)

b) i 8 ii 10 c) i $\mathrm{P}(\mathrm{N})=7 / 15 \quad$ ii $\mathrm{P}(\mathrm{N}$ only $)=4 / 15$ iii $\mathrm{P}(\mathrm{C}$ and N$)=1 / 5$

5 a)

	\boldsymbol{A}	not \boldsymbol{A}	
\boldsymbol{B}	1	6	7
$\operatorname{not} \boldsymbol{B}$	2	3	5
	3	9	12

b) i 1 ii 6 iii 2 iv 3 v 3 vi 5 vii $2+1+6=9$
i $\mathrm{P}(\mathrm{A}$ and B$)=1 / 12 \quad$ ii $\mathrm{P}(\operatorname{not} \mathrm{A})=3 / 4 \quad$ iii $\mathrm{P}(\mathrm{A}$ only $)=1 / 6$
6 a) $\mathrm{P}(\mathrm{A})=5 / 9$
b) $\mathrm{P}(\mathrm{A}$ and B$)=2 / 9$
c) $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=1 / 3$
d) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=2 / 5$

7 a)

	\boldsymbol{A}	not \boldsymbol{A}	
\boldsymbol{B}	5	2	7
not \boldsymbol{B}	8	0	8
		13	2

b) $\mathrm{P}($ bench only $)=2 / 15$

$$
\begin{aligned}
& P(B \mid A)=\frac{\text { number in } A \text { and } B}{\text { number in } A} \\
& P(A \mid B)=\frac{\text { number in } A \text { and } B}{\text { number in } B}
\end{aligned}
$$

c) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=5 / 13$
d) $P(A \mid B)=5 / 7$

8 a)

Roll 2

		1	2	3	4	5	6
Roll 1	1) (1,2	(1,3) (1,4	(1,	$(1,6)$
	2) $(2,2$	(2,) (2,		2, 6)
	3	(3, 1) $(3,2$	$(3,3)$) $(3,4$	$(3,5)$	$(3,6)$
	4) $(4,2$	$(4,3$) $(4,4$	$(4,5)$	$(4,6)$
	5	(5, 1) $(5,2)$	$(5,3)$) $(5,4$	$(5,5)$	$(5,6)$
	6	(6,1)) (6,2)	$(6,3$) (6,4	(6,5)	$(6,6)$

b) 36 outcomes
c) $P(1,5)=1 / 36$
d) i $P($ double $)=6 / 36 \quad$ ii $\quad P($ sum of at least 10$)=1 / 6 \quad$ iii $P($ sum not equal to 7$)=5 / 6$

9 a)

		1 st			
		K	I	C	K
	K	\times	(I, K)	(C, K)	(K, K)
2nd	I	(K, I)	\times	(C, I)	(K, I)
	C	(K, C)	(I, C)	\times	(K, C)
	K	(K, K)	(l, K)	(C, K)	\times

b) \quad i $\mathrm{P}(\mathrm{K}, \mathrm{C})=1 / 6 \quad$ ii $\mathrm{P}(\mathrm{K}, \mathrm{K})=1 / 6 \quad$ iii $\mathrm{P}(\mathrm{K}$ and C$)=1 / 3$

10
a) $\mathrm{P}($ red from box A$)=1 / 2$
b $\mathrm{P}($ red from box $B)=1 / 4$
c)

Box Counter Outcome Probability

d) $\quad \mathrm{P}(\mathrm{B}$, red $)=1 / 8$
e) $P(1$ red $)=3 / 8$

11 a) Selection 1 Selection 2 Outcome Probability

(B, B) $\quad \frac{5}{8} \times \frac{4}{7}=\frac{5}{14}$
(B, W) $\quad \frac{5}{8} \times \frac{3}{7}=\frac{15}{56}$
(W, B) $\quad \frac{3}{8} \times \frac{5}{7}=\frac{15}{56}$
(W, W) $\quad \frac{3}{8} \times \frac{2}{7}=\frac{3}{28}$
b) i) $P(B, W)=15 / 56$
ii) $P(B, B)=5 / 14$
iii) $P(1$ blue $)=15 / 28$
c) i) $\mathrm{P}(\mathrm{B}, \mathrm{W})=15 / 64$
ii) $P(B, B)=25 / 64$
iii) $P(1$ blue $)=15 / 32$

12 a Yes, events A and B are independent.
b No, events A and B are not independent.

