Right-Angled Triangles
Introduction to Pythagoras' Theorem![]()
|
Finding the length of the hypotenuse![]()
|
Finding the length of shorter sides |
Solving problems |
Introducing the Trigonometric Ratios![]()
Finding unknown angles![]()
Angles of Elevation and Depression |
Finding the length of unknown sides![]()
Problem solving using trigonometryBearings |
--------------------------------------------------------------------------------------------------------------------------------------------------------------
Practice Tests
Practice Test 1![]()
|
Practice Test 2![]()
|
Practice Test 3![]()
Practice Test 1![]()
Practice Test 3![]()
|
Practice Test 4![]()
Practice Test 2![]()
Practice Test 4![]()
|
--------------------------------------------------------------------------------------------------------------------------------------------------------------
Literacy Activities
Study Stack
Fill in the Blanks
--------------------------------------------------------------------------------------------------------------------------------------------------------------
Additional Resources
--------------------------------------------------------------------------------------------------------------------------------------------------------------
Videos
--------------------------------------------------------------------------------------------------------------------------------------------------------------
Did You Know
In mathematics, an Euler brick, named after Leonhard Euler, is a rectangular cuboid whose edges and
face diagonals all have integer lengths. A primitive Euler brick is an Euler brick whose edge lengths are relatively prime.
The smallest Euler brick, discovered by Paul Halcke in 1719, has edges (a, b, c) = (44, 117, 240)and face diagonals (d, e, f ) = (125, 244, , 267).
face diagonals all have integer lengths. A primitive Euler brick is an Euler brick whose edge lengths are relatively prime.
The smallest Euler brick, discovered by Paul Halcke in 1719, has edges (a, b, c) = (44, 117, 240)and face diagonals (d, e, f ) = (125, 244, , 267).